Thunder echoes from a steep, gray headwall towering over a timbered alpine lake 8,000 feet above sea level. A hot summer day culminates in flashes of lightning that repeatedly strike the exposed ridge—a storm fueled by the northern extreme edge of the North American monsoon—a continental force that occasionally brings summer thunderstorms rolling across Mexico and the Southwest United States, up the Rockies, dipping into Montana.

This is just one of the many ways that the Anaconda-Pintler Wilderness is a point of transition.

The 158,615-acre Montana wilderness, named after the Anaconda Mountain Range and Charles Ellsworth Pintler, a Big Hole Valley settler of the late 1800s, incorporates portions of the Bitterroot and Beaverhead-Deerlodge National Forests. The Wilderness began as a Forest Service Primitive Area in 1937 through the direct impetus of Bob Marshall, and was later established with the passage of the Wilderness Act in 1964. It is thus among the first wilderness areas designated in the world, marking a new era in land preservation.

The Wilderness narrowly straddles a segment of the Continental Divide that unexpectedly breaks away from the heights of the Bitterroot Range dividing Montana and Idaho, instead cutting diagonally to the northeast along the Anaconda Range. Here, the Divide bulges out to the west, between...
the Yellowstone Caldera and MacDonald Pass near Helena, deviating from its more typical north-south orientation—the largest such deviation in the United States. The North American Plate is slowly drifting southwestward over the Yellowstone Hotspot: from its location 16 million years ago beneath what is now Boise, Idaho—480 miles away—to its present location beneath Yellowstone National Park. This collision of the Rocky Mountains with the Hotspot deflected the Divide westward, broke off a massive piece of granite from the Bitterroot Mountains to form the Anaconda Range, and reversed the flow of the Big Hole River.

The myriad 9,000 and 10,000 foot peaks of the Anaconda-Pintler portion of the Divide scrape off moisture flowing in from the Pacific Northwest as it combines with the prevailing southwest winds, capturing some of the highest snowfall in this part of the state, and distinguishing it from the relatively drier portions of southwest Montana. The slender alpine heights of tundra and rock quickly give way to great expanses of forest that compose the majority of the Wilderness. Colorful mountain lakes, most snug against steep headwalls, are concentrated within the highest portions of timber. Further reflecting this shift in moisture and temperature are the ancient Subalpine Larches at the edge of their southernmost range: from their high perches in the Anacondas, they glow a brilliant yellow in the fall.

The Continental Divide separates watersheds: eastern creeks like Fishtrap and Seymour drain into the Big Hole River, eventually the Missouri, and ultimately the Gulf of Mexico; western creeks like Page and the East Fork Bitterroot eventually drain into the Columbia River and ultimately the Pacific Ocean. Cool, clear water streams freely down from the mountains’ lakes and springs, usually lasting through the summer due to both the large quantities of persistent snow and the slow release of mountain hydrology. A snow butterfly—a giant cornice whose wings straddle the heights of East Goat Peak—visible from as far away as Jackson, Montana—offers a sign that local ranchers and farmers have long relied on to indicate late-season expectations for irrigation run-off—a constant reminder of their dependence on these mountains.

The Anaconda-Pintler Wilderness is also defined in distinction to its surroundings: its free-flowing waters stand in contrast to the ditches and reservoirs near its boundaries; its silence and solitude from nearby roads; it is a sanctuary from the intensive mining development that once spread out from the nearby former boomtowns of Butte and Anaconda; the Anaconda Range forms the northern border of the Big Hole—an expanse of sage and grass covered plains encircled on all sides by mountains; while turning points in history occurred within view of its peaks—the explorations of Lewis and Clark in the early 1800s, and the battle of the Big Hole 70 years later.

This narrative describes five tangible qualities of wilderness character in the Anaconda-Pintler Wilderness: natural, untrammeled, undeveloped, solitude or primitive and unconfined recreation, and other features of value. These qualities provide insight into future measurements of wilderness character and are described to assist in selecting indicators for future monitoring. After identifying and highlighting these qualities, monitoring will be the next key management tool to preserve the Anaconda-Pintler Wilderness so it can retain its wild character and be left unimpaired for future use and enjoyment as wilderness.
Natural Wilderness maintains ecological systems that are substantially free from the effects of modern civilization.

The Anaconda Range was formed when a detached granitic mass broke from the eastern face of the Bitterroot Range and moved eastward into what is now the Bitterroot Valley, pushing and folding sedimentary formations ahead of its leading edge. Granitic magma penetrated the sedimentary folds from below, then crystallized forming large granitic intrusions. Some of the rocks of the Anaconda Range are over a billion years old, yet contain ripple marks and mud cracks that look like they formed yesterday. Other rocks have been subjected to pressures and temperatures so high that the original rock type cannot be recognized. The Anaconda Range is one of the few places in the Montana Rockies where rocks from the middle of the crust are exposed at the surface.

The structures of the Wilderness are dominated by thrust faults that bound sheets of rock, northerly trending folds, and younger high-angle faults which link structures with the broader Sevier Fold and Thrust belt, and later— the Basin and Range province where north-south trending mountain ranges are separated by basins filled with sediments eroded from the ranges.

Basin and Range rifting in the immediate area around the Anaconda Range, including the Big Hole Valley, caused valley floor descent exposing its steep southeast face with its magnificent glacial landscape of hanging valleys, cirques, aretes, and moraines. The effects of glaciation are everywhere visible in the Wilderness: alpine glaciers carved the peaks; lakes occupy glacial cirque basins; long valleys are walled by moraines left behind when the glaciers melted; rock glaciers remain on the north-facing scarps of the high peaks.

An array of vegetation exists within the Anaconda-Pintler Wilderness because of complex geology, diverse topography, including nearly 5,400 feet of elevation difference from its lowest to highest points, and annual precipitation variation. The vegetative spectrum varies with elevation and available moisture. Sagebrush, extensive willow flats, Ponderosa Pine, Douglas Fir, Lodgepole Pine, and spruce comprise much of the lower elevation vegetative mosaic. These blend into aspen, Subalpine Fir, and relatively large stands of Sub-alpine Larch and Whitebark Pine as the elevation increases. The highest areas of the Wilderness are characterized by bare, lichen-covered talus slopes, tarns, and snowfields. Alpine lakes and wetlands are common. Alpine tundra vegetation consists of forbs, grasses, sedges, and very low shrubs. Rarely does vegetation grow taller than 30 centimeters in this harsh environment. The area has the appearance of a grassy sward broken only by patches of bare ground or stones. Since frost can occur on any given day of the year, soils are frost churned and form irregular stone polygons, referred to as patterned ground, on the harshest sites.

Rare plant populations are found in a variety of locations in the Wilderness. Moist meadows provide habitat for Pink Agoseris, Pygmy Gentian, Wolf Willow, and Lesser Clubmoss. Maritime Sedge, Kruckeberg’s Swordfern, Cascade Willow, and Storm Saxifrage populations grow in alpine habitats along the Continental Divide. Alpine habitat in other locations sup-

Edith Lake. Photo by Jacquelyn Smith
ports Storm Saxifrage populations, as well as tufted Pussy-toes and Weber’s Wawwort populations. Small wet meadows are scattered throughout the Wilderness, as are berries, such as grouse and whortleberry, providing food for wildlife and visitors alike.

Non-native plants and noxious weeds are present in the Wilderness, especially along trails, but are not yet at a critical mass. However, the Anaconda-Pintler is vulnerable as this ongoing threat continues to encroach. Sheep grazing that lasted through the 1960s, especially on the Bitterroot side, may have introduced weeds and had other lasting effects on the vegetation. The Wilderness, like most of the northern Rockies, has been affected by native Whitebark Pine beetle and invasive blister rust thus leaving dead stands—fuel for future fires.

Most of the Wilderness is a forested mosaic due to its complex fire history. The forests are primarily dominated by dense stands of Lodgepole Pine. The Wilderness, especially on the Bitterroot side, is prone to frequent and large fires due to its relatively short fire interval caused by numerous dry lightning strikes and dense fuels. Fire starts in the Beaverhead-Deerlodge are notably less frequent, occurring approximately every three to five years. Most starts are due to natural causes; however, fires sometimes start outside of the Forest and continue to burn into the Wilderness, powerlines being a notable cause. Fire starts are concentrated in the Bitterroot portion of the Wilderness and, though these are heavily suppressed, large fires are also concentrated on the Bitterroot, notably the approximately 250,000-acre Mussigbrod fire in 2000, the 2017 Myers Fire, as well as smaller fires in 1980 and 2010. These and other small fires have left fire scars scattered throughout the Wilderness, again concentrated mainly on the Bitterroot.

Typically, Bitterroot starts burn northeastward onto the Beaverhead-Deerlodge, directed by the prevailing southwest winds, but also due to the Wilderness’s northeast orientation that harbors north-facing slopes with more shade and moisture tolerant vegetation, sheltered from sun and wind exposure. Winds that blow from the Divide can also push fires down canyon towards the Big Hole Valley.

The historical role of fire in the Wilderness as a natural ecological driver has been altered not only by changes within, but also beyond its borders: a variety of both land ownership and responses to fire often results in a departure, both from natural fire regimes that would have started more easily in quick-burning, valley-bottom grasslands, which would have naturally carried fire up into the Wilderness, and the prehistoric fire regimes likely sometimes induced by Native Americans in the area. Contemporary nearby human influence, though generally working to suppress low-elevation fire starts, may on rare occasion lead to human-caused grassland fires that continue to burn up into the Wilderness.

Historically, most of the Wilderness was a relatively sparse fishery with far fewer lakes containing fish. Many lakes and streams have since had fish introduced, likely first in small quantities by waves of settlers who brought their preferred fish species, then by the State of Montana for the purpose of providing backcountry angling opportunities. Fish introduction into historically fishless lakes can have multiple effects, including potential decline or extinction of amphibian populations, such as the Western Toad—a Forest Service sensitive species at the edge of its natural range, though it is not fully understood to what degree fish introductions in the Wilderness have altered aquatic communities.
Fish populations now include native Westslope Cutthroat Trout, Bull Trout, and Mountain Whitefish; and introduced Brook Trout, Brown Trout, Rainbow Trout, Yellowstone Cutthroat Trout, and Arctic Grayling, which are found in a few lakes beyond their historic range; as well as a variety of hybrids. Several species, such as Redside Shiner and Mountain Whitefish, exist just beyond the boundaries of the Wilderness, but rely on its cool waters. Westslope Cutthroat Trout, Bull Trout and Arctic Grayling are Forest Service designated sensitive species.

Westslope Cutthroat are, despite their name, a native species east of the Divide along the eastern slopes of the Anaconda Range, but are greatly threatened by nonnatives in this area. Laramche and Seymour Creeks, for instance, contain no pure Westslope, while Plimpton stands apart in having a pure conservation population. Fortunately, they are doing well west of the Divide. Bull Trout are only found west of the Divide, utilizing the headwater tributaries of East Fork Bitterroot, East and Middle Forks of Rock Creek, among others.

Wilderness areas in Montana, including the Anaconda-Pintler, primarily protect high elevation habitat, and thus provide important sanctuaries for native species due to the cold, clean water that they provide. Montana wilderness will thus become increasingly important in the warmer future that climate change is bringing. Lower elevation waters are expected to warm beyond the habitable limits of many native cold-water fish species, thus leaving isolated pockets scattered throughout the region. Bull trout, for instance, are already being affected and their populations are expected to decline with increased warming, in large part due to increasing competition with Brook and Brown Trout, which are already migrating into upstream Bull habitat as it warms.

The Anaconda-Pintler Wilderness is relatively isolated from other large protected landscapes, as compared to the continuity of the Greater Yellowstone Ecosystem or the Northern Continental Divide Ecosystem, between which the Wilderness is intermediate, but, because the Anaconda-Pintler is surrounded by the relatively undeveloped watersheds of the Upper Clark Fork and Big Hole Rivers, and is within range of other nearby mountain chains, there is some degree of connectivity to these larger ecosystems, despite the relative barriers of Interstates 15 and 90.

Most of Montana’s big game species and furbearers occupy the Wilderness during a portion of the year. Elk, mule deer, black bear, bighorn sheep, and whitetail deer use the area, primarily from April to November. Mountain lions and gray wolves, of which there are several packs based in areas surrounding the Wilderness, follow these ungulates as they move between summer and winter range. Some elk winter range is found in the far northeastern corner of the Wilderness near Anaconda. Mountain goats occupy the mountains, while moose occupy bottomlands, such as along Rock Creek, yearlong. Furbearing species such as bobcat, marten, and wolverine are also present, as are many smaller mammals and birds, including golden eagles.

Though a grizzly bear was killed within miles of the Wilderness in the State Mount Haggin Wildlife Management Area near Anaconda, and a few others have been documented in mountain ranges in the region, no grizzlies have been scientifically confirmed within the Wilderness. There is denning habitat in the Wilderness, but if grizzlies are in the area, they may be more likely to use it for summer foraging and as part of a migration corridor.

Few systematic wildlife surveys have been conducted in the Wilderness, though mountain goats have been intermittently surveyed from the air. Two bighorn sheep herds—Rock Creek and Anaconda use the Wilderness occasionally. Both had pneumonia induced all age die-offs from 2010 to 2012.
Wilderness is an area where the earth and its community of life are untrammeled by man, in which an area retains its primeval character and influence. Wilderness areas should be allowed to run free and unhindered from the intentional actions of modern human control or manipulation. Management must be approached with the utmost humility and restraint. All actions should be scrutinized and minimized when controlling or interfering with the plants, animals, soils, water bodies, and natural processes of a wilderness. Many actions that improve other qualities of wilderness character—such as the removal of non-native invasive species, which improves the natural quality—are still considered trammeling actions, as they intentionally manipulate the ecological system.

In the Anaconda-Pintler Wilderness, rivers and streams flow freely—undammed and undiverted; animals move throughout the Wilderness and beyond its borders at will; wildfire and climate are still important drivers of the ecosystem, with several large lightning-caused fires changing the Forest in some areas; while prescribed fire is nearly nonexistent. However, wildfires are nearly always suppressed, because of the long narrow configuration of the Wilderness and perceived threats to neighboring lands. This is partly due to critical wildland urban interface very near its borders, including the Springer and Bonanza communities along the East Fork Bitterroot.

Various management actions have been taken, or are proposed, to attempt to alter fisheries in the Wilderness. A few lakes are stocked, repeated about every four years. This in turn affects the composition of the outflowing creeks and rivers. A variety of native fish restoration projects have taken place. This typically involves the use of the piscicide Rotenone to remove nonnative fish like Rainbow and Brook Trout, ideally above a natural barrier such as a waterfall, or preexisting artificial barrier such as an irrigation diversion, but sometimes artificial barriers are constructed outside of wilderness boundaries. Fish removal has occurred on Pintler Creek and Oreamnos Lake, and on West Fork Mudd Creek. The objective of these efforts is typically to restock with native fish, primarily Westslope Cutthroat Trout. Reintroductions have occurred in Pintler Creek and West Fork Mudd Creek, and have often utilized native fish from Plimpton Creek.

Future potential projects include removal and reintroduction on West Fork LaMarche Creek, and increased use of artificial barriers west of the divide to assist Bull Trout populations. A large population of Bull Trout is in the East Fork Reservoir, downstream from important spawning habitat in the upper East Fork. For this reason, a structure may be added to assist fall migration when waters are low.

Other trammeling actions include the planned Pintler Meadow restoration project of a portion of the creek that has cut a deep incision, thus impeding late season water retention. Spraying weeds is permitted, and occurs to some degree throughout the Wilderness, but most often in the Bitterroot. Weeds are usually sprayed with backpack sprayers or on horseback. Two grazing allotments extend into the Wilderness in the Wisdom-Wise River District, wherein about 140 head of cattle graze, a consistent quantity going back to at least 1971. These are managed under a pasture rest rotation grazing strategy. The permittees must utilize horses and hand tools to work in the allotments. Occasionally, the State may actively manage wildlife in the Wilderness as needed, utilizing methods that may include introducing and relocating species.

The Anaconda-Pintler Wilderness stands apart from other lands as a place where natural processes are allowed to follow their own course, where intentional human actions to manipulate and manage the landscape are minimized, where nature’s autonomy and the free play of dynamic evolutionary forces reign.
Undeveloped Wilderness retains its primeval character and influence, and is essentially without permanent improvements or modern human occupation.

The Anaconda Range’s snow-capped peaks catch the eye of a few motorists speeding along Interstate 90 and Highway 93—part of an unceasing stream of vehicles. A spiderweb of interlacing roads connects these thoroughfares, a handful of which branch off and turn to dirt as they climb through farms and fields and forests towards an expanse of wild, undeveloped mountains, where 22 trailheads provide access to the Anaconda-Pintler Wilderness. All roads end here: to go any further requires the use of animal power—horse, mule, or a pair of human legs—providing the opportunity for those who wish to venture past these remote roads to reconnect to a primeval landscape—beyond the confines of a machine—as humans have for millennia.

Within its borders are a network of hundreds of miles of trails that pass through a landscape marred by only a very few developments: a small number of cabins, mine sites, and other structures in varying stages of disintegration; two water diversion ditches, totaling 1.53 miles in length, that predate the Wilderness; actively maintained drift fences associated with grazing allotments; two inholdings on the Philipsburg District, totaling 41 acres; a portion of the East Fork Bitterroot parking lot, and Mystic Cabin—a development that has historic significance and so is addressed below as an additional feature of value.

Occasionally, mechanized equipment and mechanical transport occur as temporary developments within the Wilderness: fish stocking utilizes helicopters; fish reintroductions typically are carried out by horseback or on foot, but may require helicopters or fixed-wing airplanes in areas difficult to access; wheels and helicopters have been used for emergency rescues; non-administrative snowmachine, ATV, and chainsaw incursions may breach the boundaries on occasion; while fires have been suppressed with chainsaws, retardant, pumps, or helicopters if deemed the minimum tool necessary.

Other developments occur within the Wilderness: wildlife fitted with tracking collars sometimes wander in, thus bringing this development with them, though the trammeling installation likely occurred outside; on rare occasions, studies have included installations like traps and cameras; restoration efforts for fisheries have utilized a variety of temporary structures including gill nets in lakes for surveys, streamside incubators for reintroductions, and drip stations for piscicide application; while a small dam composed of local materials may be constructed to help restore Pintler Meadow.

Beyond these relatively minor developments, the Anaconda-Pintler Wilderness gives visitors the chance to experience a landscape that stands free from intensive human structures and modifications in contrast to the web of towns and roads that characterize much of the surrounding area.
Wilderness provides outstanding opportunities for solitude or primitive and unconfined recreation.

The crest of the Continental Divide forms part of a thin alpine corridor containing a handful of mountains over 10,000 feet and dozens over 9,000 feet that constitute the Anaconda Range, as well as accessible ridges, high timbered lakes, and rugged geology that reveals a glacially carved past—key attractions for visitors to the Wilderness.

Approximately 280 miles of Forest Service system trails, including 40 miles of the Continental Divide National Scenic Trail, and associated primitive campsites, provide access—through long forested valleys east of the Divide and in the Bitterroot—in contrast to quicker access to the alpine from other areas west of the Divide. Many of these trails were constructed after the large 1910 fire season to enable access for firefighting, or were routes long used for grazing and packing, with some probably also once utilized by native peoples. Due to its small size, there are few locations in the Wilderness beyond the range of a day trip.

The Anaconda-Pintler Wilderness is less trafficked than many other wildernesses in the area, due in part to being relatively far from population centers, though still within range of Butte, Missoula, communities in the Bitterroot Valley, and especially Anaconda. Apart from the Bitterroot, the portions of the Wilderness west of the Divide see the most visitation, culminating in the highly trafficked northeast corner—the area closest to population centers and providing some of the easiest access to lakes and the alpine. Backpackers and day hikers on foot form the majority of use here.

The Bitterroot and the Wilderness east of the Divide, adjacent to the sparsely populated Big Hole, is far less visited and attracts different types of use, notably a much higher proportion of stock and hunting use, particularly in the fall. Major exceptions are the popular Goat Peaks, especially West Goat Peak, which at 10,793 is the highest point in the Wilderness; and the Continental Divide Trail (CDT), which cuts across both sides of the Divide, and is thus one of the most heavily visited portions of the Wilderness east of the Divide.

The majority of the Wilderness provides excellent opportunities for solitude, though varying according to the trends in visitation described above. Multiple areas allow for multi-day trips without encountering another party, while in others, notably the CDT and the Pintler District, solitude can be harder to attain. Solitude is essentially nonexistent in the Pintler District in August and September, especially at Maloney Lake, Carpp Lake, and Goat Flat—areas that see heavy use by day hikers and large groups such as hiking clubs, Meetup groups, and packers. Though visitation as a whole has probably declined since the 1990s, visitation in this area has been steadily increasing since around 2013, due in part to growing populations in nearby cities. Use on the CDT has also been growing in the last few years. These regional trends of increased use are expected to continue. Most use is concentrated in the summer, thus the winter, with the possible exception of the Storm Lake Pass area, provides ample solitude.

Administrative presence in the Wilderness is relatively low. A handful of rangers and trail crew work within the wilderness during the summer and fall, with some notable past gaps without coverage by rangers during the early 2010s. Crews of volunteers are often utilized to assist with trail maintenance.

Photo by Jacquelyn Smith
SPUR (Solitude or Primitive and Unconfined Recreation) Wilderness provides outstanding opportunities for solitude or primitive and unconfined recreation.

The Anaconda-Pintler Wilderness is rarely within sight and sound of outside developments, which can degrade the wilderness experience. A widespread assessment in 2013 by the Wilderness Institute recorded a total of five visual intrusions, including one town, one building, three dirt roads, and no mining or similar industrial operations. These intrusions were recorded from within one mile inside the Wilderness boundary. A gradient of overall minimal light pollution extends along the length of the Wilderness, from a maximum of 1-2% anthropogenic light above the natural condition in the far northeast near Anaconda, to the darkest corner on the Bitterroot near Dense Creek. Dark night skies, with clear views of distant stars and galaxies thus abound, amplified by the clear air of its class 1 airshed. The quiet soundscape is rarely broken except by the natural sounds of rushing water, wind gusts, and birds; with the notable exception of intermittent overflights—usually jets, as well as increased plane traffic when there are fires in the area. Cell signal, which does not have a physical presence, but still diminishes self-reliant recreation, exists on many ridges and mountains.

Opportunities for primitive recreation abound. This can especially be attained by traversing off-trail across alpine ridges and on the least improved system trails. The 2013 study found a total of 159 installations and developments within the Wilderness boundary. Recreational developments recorded as “bridges” were most common (148 total); however, analysis of photographs indicates that this category was broadly used, and included culverts and trail structures across wet areas. Thus, bridges, turnpikes, culverts, boardwalks, and similar structures are the most common recreational developments along trails—impeding primitive recreation. Cairns marking trails, especially in the alpine, are maintained by Forest staff. Signs are also found throughout the Wilderness, most often directional, but occasionally communicating regulations around lakes. These are usually constructed of wood, but in the future metal signs could become more common.

Unconfined recreation is hampered here by only a few special regulations that restrict visitor use beyond the terms of the Wilderness Act and other overarching applicable laws and policies. These include food storage requirements, fire and camping restrictions in a select few areas, and group size limits. Mandatory registration is required throughout the Wilderness. This is not a true permit as there is no fee or cap on visitation. This was implemented in 2000 in response to increasing visitation at that time, as a potential precursor to a true permitting system if those trends had continued. However, overall Wilderness visitation has dropped since that time, though with notable regional exceptions. Registration provides a rough tally of visitation, but is difficult to enforce. Stock restrictions include a weed seed free feed requirement, restricted access in the Pintler District from April 1 to July 1 and on the Hope Lake Trail, for grazing and tethering near lakes, and for camping near a select few lakes.

Additional notable challenges facing the Wilderness are heavy impacts around lakes, poorly executed food storage often leading to large quantities of ropes left in trees, braided trails exacerbated by early season travel, especially by stock, in wet conditions, and a lack of consistent campsite monitoring across Forests. Additionally, trailheads and access roads have increasingly been improved and developed over time, enabling easier access to the Wilderness, and thus altering an aspect of the visitor’s experience and potentially affecting visitation.

The Anaconda-Pintler Wilderness is a landscape of opportunity—a place where visitors can feel free from everyday social constraints, can awaken their senses, connect with the beauty of nature and the larger community of life, and rely on their own skills and abilities to navigate and explore an undeveloped and wild land.
Other Features of Value

Wilderness preserves other features that are of scientific, educational, scenic, or historical value.

Compared to the span of geologic time, human presence in what is now the Anaconda-Pintler Wilderness is barely more than the blink of an eye. Unimpeded natural forces shaped this landscape for billions of years: eventually creating its current mountains and valleys, and giving birth via an open-ended evolutionary process to its diversity of life. Though the Anaconda Range escaped the seamlessly connected mass of Pleistocene ice sheets that covered most of northern North America, it had its own isolated ice cap. These great glaciers began to recede 20,000 years ago allowing Late Pleistocene humans from Asia to enter onto this wild continent, filled with large megafauna, many now extinct. People, drawn southward by wild game, entered Montana around 13,000 years ago, and likely soon utilized the Anaconda Range once enough ice receded to make it accessible.

Archaeological sites found within the Wilderness are physical representations of thousands of years of use by Native Americans in this region. These rare and subtle markers of human occupation suggest that the area was frequently, if transiently, occupied by small groups migrating between the Bitterroot, Big Hole and Upper Rock Creek basins. People utilizing the region likely participated in hunting and gathering forays, utilizing a myriad of native plant and animal resources, including elk, deer, bighorn sheep, and bison. English place names like Flint Creek Valley recall the remnants of this ancient past.

Much of the West, probably including the Wilderness, was manipulated by humans through a landscape approach, sometimes involving human-induced wildfires, for millennia. Native peoples understood wildfire’s ecological role in reducing fuels, managing big-game habitat, and encouraging the increased growth of many traditional use plants. These lands and local ecosystems that are now enjoyed and protected as Wilderness, were preserved largely intact through the careful stewardship of traditional land-use practices by Native Americans over thousands of years.

During the historic period (roughly 1700-1920) the area is known to have been inhabited by Blackfoot, Shoshone, Nez Perce, and Salish Tribes, the latter of whom had three bands in the area, including in the Big Hole and Bitterroot Valley; and a traditional territory that encapsulated the Wilderness in its western edge. These groups continue to be active in Western Montana and Idaho today—still relying on traditional plants and animals in their various territories, and for whom the lands now designated as Wilderness are of continuing importance.

With the arrival of European settlers, beginning with the famous Lewis and Clark Expedition in 1804-1806, the area was occasionally inhabited by fur trappers, loggers, prospectors, and the occasional homesteader; however, by the 1930s much of the region remained remote and uninhabited, lending itself to its original designation as a Forest Service Primitive area, a precursor to Wilderness. Some evidence of early Euro-American presence can be seen within the Wilderness area today through the historic period artifacts occasionally found throughout the region.

Wilderness designation, in forbidding roads, mechanical transport, and other developments, has been instrumental in protecting archaeological resources. Despite this designation and the rugged and remote characteristics of the area, cultural resources can still be adversely affected by looting, trampled vegetation, and human waste, while many areas remain unsurveyed—a vital first step in future management of heritage resources.

Mystic Cabin, an administrative site still intermittently used today, was built at Mystic Lake by Emil Swartz in 1930, and is now actively maintained using hand tools and local materials. McCart Lookout, also built in the 1930s, is on the Bitterroot Forest 50 feet outside of the Wilderness, available for public use, and will soon be listed on the National Register of Historic Places.

Just beyond the Wilderness boundaries are two sites of great historical importance. In Ross’s Hole—west of the Wilderness near Sula—in September 1805, the Lewis and Clark expedition obtained much-needed horses from the Bitterroot band of the Salish prior to crossing the Bitterroot divide at Lolo pass on their journey west. In the Big Hole Valley, just south of the Wilderness, the Battle of the Big Hole was fought in August 1877, between U.S. troops and a band of Nez Perce led by Chief Joseph,

Photo by Backcountry Horsemen of America (bchmt.org/)
Other Features of Value

Wilderness preserves other features that are of scientific, educational, scenic, or historical value.

Looking Glass, and others, at a site where they camped after fleeing from Idaho via Lolo Pass as they attempted to escape to Canada. The site of the battle is now protected as a National Battlefield.

Many areas throughout the span of human existence have been minimally occupied and affected by humans, whether intentionally or by virtue of their inaccessibility. Wilderness is unique in human history, however, in deliberately and legislatively seeking to preserve, as much as possible, naturally occurring species, landscapes, and processes, in all their diversity, with minimal interference, while accommodating certain continued human uses like recreation, hunting, and fishing. In our era, with large populations, enabled by powerful technologies, this state of land has become so rare as to warrant specific protection as such. Wilderness can thus also provide a baseline, where nonmanipulative scientific research can occur. This is especially the case in the Anaconda-Pintler Wilderness as it includes portions of two Research Natural Areas, specifically designated for this purpose: Goat Flat and East Fork Bitterroot RNAs.

The Anaconda Range, protected as the Anaconda-Pintler Wilderness, allows nature’s wild processes of creation and destruction to flow freely on forever into the future.

Photo by Chris Dunn
With considerable assistance, including a tremendous wealth of knowledge, from:

- Matt Werle, Archaeology FS — especially for supplying some draft verbiage about cultural resources
- George Brimhall, Geology, Berkeley — George is a resident of Wisdom and was kind enough to create an appendix specifically focused on the geology of the Anaconda-Pintler Wilderness
- Confederated Salish and Kootenai Tribes — for providing an appendix describing the value of this landscape for the tribes
- Deb Gale, Recreation/Trails/Wilderness FS
- Bob Hutton, Range FS
- Diane Hutton, FMO FS
- Ray Vinke, Former Wildlife FWP
- Anne Roberts, Wildlife FS
- Nellie Bunce, Wilderness FS
- Hallie Zolyinski, Wilderness FS
- Derek Davenport, FMO FS
- Kevin Weinner, Fisheries FS
- Paul Hooper, Fisheries FS
- Jessica Dhaemers, Range FS
- Kevin Weimer, Hydrologist FS
- Jim Olsen, Fisheries FWP
- Jocelyn Dodge, Recreation FS
- Roger Anderson, Recreation FS
- Adam Washebek, Wilderness FS
