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W e p r e s e n t  T e rraC l im a te ,  a d a t a s e t  o f  h igh -spa t ia l  reso lu t ion  (1/24°, -4 -k m )  m o n th ly  c l im a te  an d  climatic  

w a t e r  b a la n c e  fo r  g lobal  te r re s t r ia l  su r fa c e s  f ro m  1 9 5 8 - 2 0 1 5 .  T e r ra C l im a te  u se s  cl imatically  a ided  

in te rp o la t io n ,  c o m b in in g  h igh -spa t ia l  reso lu t ion  c l im ato log ica l  n o rm a ls  f ro m  t h e  WorldClim d a t a s e t ,  w ith  

c o a r s e r  reso lu t ion  t i m e  vary ing  (i.e., m o n th ly )  d a t a  f ro m  o t h e r  so u rc e s  t o  p ro d u c e  a m o n th ly  d a t a s e t  o f  

p rec ip i ta t ion ,  m a x im u m  a n d  m in im u m  t e m p e r a t u r e ,  w ind  s p e e d ,  v a p o r  p re ssu re ,  a n d  so la r  rad ia t ion .  

T e r ra C l im a te  add i t iona l ly  p ro d u c e s  m o n th ly  su r face  w a t e r  b a la n c e  d a t a s e t s  using a w a t e r  b a la n c e  m o d e l  

t h a t  in c o rp o ra te s  r e fe re n c e  e v a p o t r a n s p i r a t io n ,  p rec ip i ta t ion ,  t e m p e r a t u r e ,  a n d  in te rp o la te d  p lan t  

e x t r a c ta b le  soil w a t e r  capac ity .  T h e s e  d a t a  p rov ide  i m p o r t a n t  in p u ts  for  ecologica l  an d  hydro log ical  s tu d ie s  

a t  g lobal  sc a le s  t h a t  requ ire  high spa t ia l  reso lu t ion  a n d  t i m e  varying  c l im a te  a n d  c l im atic  w a t e r  b a lan ce  

d a ta .  W e  va l id a ted  s p a t io t e m p o r a l  a s p e c t s  o f  T e r ra C l im a te  using an n u a l  t e m p e r a t u r e ,  p rec ip i ta t ion ,  and  

ca lcu la ted  r e fe re n c e  e v a p o t r a n s p i r a t io n  f ro m  s ta t io n  d a ta ,  a s  well a s  an n u a l  runoff  f ro m  s t r e a m f lo w  

g a u g e s .  T e r raC l im a te  d a t a s e t s  s h o w e d  n o te d  im p ro v e m e n t  in overall  m e a n  a b s o lu te  e r ro r  a n d  inc rease d  

spa tia l  rea l ism  re la t ive  t o  c o a r s e r  reso lu t ion  g r id d e d  d a t a s e t s .
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Background & Summary
Global environmental questions that invoke climate as a driver of a specific phenomenon require spatially 
and temporally consistent datasets. An extensive and growing collection of historical observed climate 
datasets exist including those that interpolate data from surface observations \  reanalysis^, and some 
combination thereof^” with each dataset offering advantages in the variables provided, temporal and 
spatial resolution, as well as the geographic extent and time period covered. Increased interest in applying 
climate data to multidisciplinary problems has prompted the development of climate datasets at more 
meaningful spatial scales. While time varying (monthly data spanning multiple decades) and high spatial 
resolution (<  5-km) climate datasets have been developed at national and continental scales®”*, and high- 
spatial resolution climate normals have been developed for the globe®”^ \ we are unaware of time varying 
(i.e., by month and year), high-resolution climate data that covers all global land surfaces and 
encompasses many of the essential surface climate variables.

There is increasing recognition of the mismatch between the scale of existing climate data and the 
scale at which organisms experience their environment^^. This has motivated a large body of work aimed 
at downscaling gridded climate fields for use in ecological and global change studies, the results of which 
may be sensitive to the spatial scale of data used^*. High spatial resolution climate data is often necessary 
for ecological and hydrological analyses and modeling *. The newest version of WorldClim^® used station 
data, remotely sensed land surface temperature, and topographic covariates to produce high spatial 
resolution climate surfaces of temperature, precipitation, wind speed, vapor pressure, and downward 
shortwave flux. While WorldClim provides a complete set of variables to assess long-term monthly 
normals for several climate variables, it does not lend itself to temporal analysis that may be important for 
linking climate variability and climate impacts in ecological, agricultural, and hydrological systems.

In addition to temperature and precipitation, there has been interest in measures of climate that are 
more directly linked to ecosystem productivity and water resources. Water balance models integrate 
climate and biophysical factors to produce a set of variables that account for the concurrence of water and 
energy. Water balance models have been used to estimate runoff^®’̂ ,̂ ecosystem productivity^*, ecosystem 
distribution^®, and ecological disturbance^®’̂ \ Whereas some global water balance datasets exist from 
simple water balance models^^” '̂* or more sophisticated land-surface hydrologic models^®, these models 
typically provide output at relatively coarse spatial scales (>50-km) or lack extensive time series 
components. Higher resolution (<  5-km) country and continental scale water balance datasets have been 
developed^\ yet global, time varying, high-resolution datasets do not currently exist.

This paper outlines the development of a global monthly high-resolution climate dataset from 
1958-2015, herein referred to as TerraClimate, that includes the requisite variables for calculating energy- 
based reference potential evapotranspiration and a water balance model. We discuss the procedures for 
downscaling coarser resolution temporal anomalies from Climate Research Unit time series data version 
4.0 (CRU Ts4.0)^ and the Japanese 55-year Reanalysis (JRA-55)^ from 1958-2015 with high-resolution 
climatological fields from WorldClim^ ® using climatic aided interpolation. Furthermore, we discuss the 
procedures used for developing the monthly water balance dataset for the period 1958-2015.

Methods
Three global gridded climate datasets were used to develop TerraClimate, each offering distinct spatial or 
temporal qualities (Table 1).

Dataset   Spatial R esolution Used   Tem poral Resolution Used Variables

W orldC lim 1/24°  -  M onthly, 1970 2000 norm als     Tas, vap, p r, srad, ws

 W orldC lim vL4^^ 1/24°  -  M onthly, I9 6 0 I9 9 0 norm als   Tm ax, Tm in, Tas

 CRU Ts4.0^ 0.5°  M onthly, I9 5 8 20I5-     Tm ax, Tm in, vap, p r, Tas

TRA-55^ 1.25°  M onthly, I9 5 8 20I5-     Tas, vap, p r, srad, ws

   Root zone storage capacity^^ 0.5°  T im e invariant   W ater storage capacity

Table 1. Datasets used in producing the TerraClimate dataset. Variable abbreviations listed include 
average monthly maximum (Tmax), minimum (Tmin) and mean temperature (Tas), vapor pressure (vap), 
wind speed (ws), downward shortwave flux at the surface (srad), and accumulated monthly precipitation (pr). 
Note that the WorldClim datasets provide only monthly climate normals averaged over a period of record.

The high-spatial resolution climatology from WorldClim version 2 (http://worldclim.org/version2) 
used thin-plate splines to interpolate station observations using covariates including MODIS derived land 
surface temperature and cloud cover, along with topographic features to develop monthly climate normal 
surfaces for global land surface^®. Monthly climate normals for the 1970-2000 period were developed for 
maximum and minimum temperature, precipitation, solar radiation, vapor pressure and wind speed at 
four different spatial grains. We used the 2.5 arc-minute (1/24°) resolution to accommodate a high-spatial 
resolution (<  5-km) product that is computationally tractable for developing longer time series.

We used the monthly diurnal temperature range (DTR) from WorldClim version 1.4 (http:// 
worldclim.org/versionl) rather than the WorldClim version 2 dataset, as the latter showed widespread
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biases in mid latitudes despite monthly mean temperature showing nominal bias (Supplementary Figs 1 
and 2). The monthly DTR from WorldClim version 1.4 for the 1960-1990 period was further modified to 
account for the change in DTR between the 1960-1990 base period and 1970-2000 base period of 
WorldClim v2.0. This was facilitated by interpolating differences in monthly DTR for these two base 
periods in the CRU Ts4.0 data. Finally, monthly average maximum and minimum temperature 
climatologies for the 1970-2000 period were reconstructed using WorldClim v2.0 monthly mean 
temperatures and the DTR from WorldClim vl.4  as modified by CRU Ts4.0.

Time varying climate data were derived from two sources: (i) Climate Research Unit (CRU) time series 
data version 4.0 (ref. 1) (Data Citation 1), and (ii) the Japanese 55-year Reanalysis (JRA-55 (ref. 2); http:// 
jra.kishou.go.jp/JRA-55/index_en.htmI). The CRU Ts4.0 data provide monthly average maximum and 
minimum temperature, vapor pressure, and cumulative precipitation at a 0.5° grid from 1901-2015 for 
global land surface and were developed based on station data. The CRU Ts4.0 data however does not 
cover all islands and does not include Antarctica. Furthermore, CRU Ts4.0 data assumes climatological 
values for pixels where there are no long-term stations within a decorrelation distance, resulting in voids 
of climate signals in poorly sampled land areas of the globe. The JRA-55 is the longest running full- 
observing-system modern reanalysis product, providing spatially and temporally complete data covering 
the period 1958-present. We calculated monthly average 10-m wind speed, downward surface shortwave 
flux, temperature, and precipitation data from 3-hourly products at a 1.25° grid. For both CRU Ts4.0 and 
JRA-55 datasets, we calculated monthly anomalies for all variables relative to the 31-year baseline period 
(1970-2000) defined by WorldClim v2.0.

Climatologically aided interpolation was used to superimpose monthly climate anomalies from CRU 
Ts4.0 and JRA-55 with monthly climate normals from WorldClim to estimate monthly time series from 
1958-2015. Climatologically aided interpolation is a simple spatial downscaling approach that employs 
bilinear interpolation of temporal anomalies from a higher-temporal, lower-spatial resolution dataset to a 
lower-temporal, higher-spatial resolution dataset^®’̂  . All anomalies were calculated relative to the 
1970-2000 base period to adhere with the WorldClim climatology. Monthly average maximum 
temperature, minimum temperature, vapor pressure, and precipitation anomalies were prioritized from 
CRU Ts4.0 where these data cover land surface pixels. The CRU Ts4.0 data assigns pixels to their 
climatological normal when there are no stations within decorrelation distances^* in a given month. 
These represent a very small fraction of the temperature and precipitation record from 1958-2015. Rather 
than use a potentially artificial null climate signal such instances, we bilinearly interpolate JRA-55 
anomalies to infill data voids. CRU Ts4.0 anomalies were further extrapolated to a 0.5° buffer from land 
masses by interpolating anomalies from the 8 nearest neighbors. Monthly anomalies from JRA-55 were 
used for pixels on islands located outside this buffer, as well as in Antarctica which is not covered by CRU 
Ts4.0. Anomalies of 10-m wind speed and downward surface shortwave flux were taken exclusively from 
JRA-55. Anomalies were computed as additive (i.e., departure from normal) for temperature, wind speed, 
and solar radiation, and multiplicative (i.e., percent of normal) for precipitation and vapor pressure. We 
capped monthly precipitation anomalies at 2,000% of normal to avoid unrealistic precipitation in 
exceptionally dry regions and months where climatological precipitation from CRU Ts4.0 or JRA-55 
approaches zero. There were rare occurrences (-0.1% of pixels) where monthly mean maximum 
temperature was less than 0.5 °C higher than minimum temperature due to our method independently 
accounting for anomalies in maximum and minimum temperature. In such cases, we set the monthly 
minimum temperature equal to 0.5 °C below the monthly maximum temperature for internal 
consistency.

Monthly reference evapotranspiration (ETq) was calculated using the Penman Montieth approach^®. 
ETo has been argued to be a more appropriate measure of potential water loss over purely temperature 
based metrics for estimating potential evapotranspiration as it uses an energy balance approach. ETq 
assumes a reference grass surface across space, but can yield biases where potential vegetation water use 
departs substantially from this assumption. Following prior studies, we modified ETq to account for 
reduced surface water flux when snow cover exists or prior to the onset of the growing season and active 
transpiration using an empirical relationship with temperature that accounts for precipitation phase
cVh anges 16,30

A one-dimensional modified Thornthwaite-Mather climatic water-balance model (WBM)^^’̂  ̂ was 
used to calculate monthly water balance from 1958-2015. The WBM is a single bucket model applied 
consistently across global land surfaces that operates on a monthly time step and considers the interplay 
between precipitation, E T q, as well as soil and snowpack water storage. The WBM accounting scheme 
considers runoff as the excess of liquid water supply (precipitation and snowmelt) used by monthly E T q 
and soil moisture recharge. Soil water is extracted during months where E T q exceeds liquid water supply, 
with the extraction efficiency of soil water declining exponentially with the ratio of soil water to 
extractable soil water capacity. Under such conditions, actual evapotranspiration is counted as the liquid 
water supply plus the soil water utilized and climatic water deficit is the difference between E T q and 
actual evapotranspiration. The WBM requires data on the plant extractable soil water capacity. We used 
extractable soil water storage capacity data at a 0.5° grid from Wang-Erlandsson et that were derived 
from estimates of satellite based evaporation, E T q, and precipitation. Wang-Erlandsson et a lP  provided 
estimates for varying return intervals. We used the 2-year period given our use of E T q, as it best matched 
with evapotranspiration variability in grassland biomes, corresponding with our use of a reference grass
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surface in the WBM. To adhere to the spatial resolution of TerraClimate, we first extrapolated data using 
a 0.5° buffer from existing data using the 8 nearest neighbors, and then bilinearly interpolated plant 
extractable soil water from its native 0.5° grid. We set a lower bound on plant extractable soil water of 
10 mm and set a default value of 50 mm  for places void of data.

We use the WBM outlined by Dobrowski et with two modifications to better account for runoff 
and snowpack dynamics on a global scale. First, we use an empirical temperature-based transformation 
for precipitation phase to determine the proportion of precipitation falling as liquid, as well as the 
fraction of snowpack melted each montb^°. Although snowmelt is a more complicated process that could 
be improved by incorporating shortwave fluxes and snowpack ripeness, temperature based indices have 
been shown to be sufficient for macroscale monthly water balance calculations^^. Secondly, we allow for 
5% of the cumulative rainfall and snowmelt each month to occur as direct runoff irrespective of soil 
conditions'^. The resultant datasets from the WBM are monthly total runoff (Q), climatic water deficit, 
actual evapotranspiration, as well as snow water equivalent and soil moisture at the end of each month.

Data Records
TerraClimate is available to the public through an unrestricted data repository hosted by the University of 
Idaho’s Northwest Knowledge Network (Data Citation 2). The full list of TerraClimate datasets are 
provided in Table 2. Files were created separately for each variable and year in NetCDF format following 
the Climate and Forecast metadata standards. A compressed archive of NetCDF files for the period of 
record covering all variables can be accessed at http://doi.org/10.7923/G43J3B0R. However, due to the 
sheer size of the data once uncompressed (-800 GB), we provide access to individual annual files for 
each variable at https://climate.northwestknowledge.net/TERRACLIMATE/. Temporal extensions to 
TerraClimate will be updated periodically as additional years of data become available.

Technical Validation
We conducted a validation of the TerraClimate product for monthly temperature and precipitation using 
station-based data obtained from the Global Historical Climatology Network (GHCN) database^'*. We 
examined time series of temperature data that have been corrected for climate inhomogeneities that arise 
due to non-climatic artifacts, such as station relocation or observational practice, from the GHCNv3 
dataset; whereas we used monthly precipitation data from the GHCNv2 dataset. We constrained our 
validation to GHCN stations that had complete monthly data for at least 30 calendar years from 
1958-2015 resulting in a total of 3,230 stations for temperature and 6,102 stations for precipitation. As a 
caveat, we note that many of these stations were used in both the WorldClim and CRU datasets making 
the comparison not completely independent.

Data from TerraClimate were extracted at grid cells co-located with individual stations. We calculated 
linear validation statistics of Pearsons’ correlation coefficients, mean absolute error (MAE), and bias for 
each station. We constrained our validation to calendar year summaries rather than individual months to 
avoid artificially inflating the correlation by incorporating the seasonal cycle. To demonstrate potential 
added value from TerraClimate, we compare our validation statistics to CRU Ts4.0, acknowledging that 
by using CRU Ts4.0 in climatically aided interpolation, we should expect similar results for temporal 
variability.

The TerraClimate dataset largely captured interannual variability in mean annual temperature across 
GHCN stations with a median Pearson’s correlation coefficient (p) of 0.95, with p>0.9 for approximately 
80% of the stations (Fig. 1). Most of the subpar correlations (p <  0.8) were found equatorward of 30° 
latitude, where interannual variability in mean temperature is lesser in magnitude. Similarly, 
TerraClimate precipitation fields captured interannual variability observed at GHCN stations globally 
with a median correlation of p =  0.90. Subpar correlations for annual precipitation were often found 
adjacent to stations with high correlation suggesting that interannual precipitation variability can vary 
across relatively short spatial scales, particularly where convective or orographic features are involved that 
influence the spatial variability of precipitation anomalies at scales finer than those resolved by CRU 
Ts4.0. Alternatively, subpar correlations may also derive from potential inhomogeneities or errors in 
station-based precipitation records.
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Table 2. Datasets provided by TerraClimate. Datasets are monthly and time varying from 1958-2015 and 
produced at a 1/24° spatial resolution.
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Dataset Variables

Essential
Climate
Variables

-    -    -    -        2 m M axim um Tem perature, 2 m M inim um Tem perature, 2 m V apor Pressure, lO m W in d Speed, D ow nw ard Solar R adiation Flux at 
   th e Surface, A ccum ulated Precipitation

ETo  Reference Evapotranspiration

  W ater Balance Variables           Runoff, Actual Evapotranspiration, Clim ate W ater Deficit, Soil M oisture, Snow W ater Equivalent

Correlation statistics were nearly identical to those found using the CRU Ts4.0 dataset, as expected, 
given its use in the development of the TerraClimate dataset (Table 3). However, the MAE was
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MAE.

substantially improved in the TerraClimate dataset, a consequence of bias correcting the data using the 
WorIdCIimv2 data. For mean temperature, the median MAE fell from 0.53 °C for CRU to 0.32 °C for 
TerraClimate, whereas for precipitation the median MAE fell from 11% to 9%. We also note that 
unaccounted-for error and associated bias inherent in comparing gridded climate data to station data is a 
function of mismatches in the scale of the data being compared. This is particularly apparent in regions of 
complex terrain where the elevation of a station may differ substantially from the average elevation of a 
co-Iocated grid cell. For example, approximately 40% of the variance in the mean annual temperature bias 
was linearly explained by biases in elevation (i.e., grid cell elevation minus station elevation).

Given the potential fidelity problems when validating TerraClimate with GHCN stations, we perform 
a complementary validation of temperature and precipitation data using a network of 2,100 automated 
climate stations located across mountains of the western United States from the Snowpack Telemetry 
(SNOTEL) and Remote Automated Weather Stations (RAWS) networks. Due to suspected 
inhomogeneities with minimum temperature records from SNOTEL stations arising from instrumenta­
tion changes^^, we used a set of homogeneized daily temperature data for both RAWS and SNOTEL 
stations^®. Additionally, we used daily records of accumulated precipitation from a more limited set of 
513 SNOTEL stations that were quality controlled^^. Station-years where more than 5% of daily 
observations were missing were omitted from the validation. Due to the short period of record for most 
stations, we used a more liberal criterion of at least 10 years of complete data to compute interannual 
correlations, resulting in 1,292 stations for temperature and 503 stations for precipitation.

Figure 1. Validation of TerraClimate temperature and precipitation time series using GHCN stations.
(a) Pearsons’ correlation coefficient (p) and (b) mean absolute error (MAE, units of °C) between GHCN stations 
and co-Iocated pixels from TerraClimate for time series of annual mean temperature (TAS) from 1958-2015. (c, 
d) Show the correlation and relative mean absolute error (units of % of mean annual Pr) for calendar year 
accumulated precipitation (Pr). Statistics are reported for GHCN stations with at least 30 years of complete data.
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TerraClimate largely captured interannual variability in mean annual temperature across the Snotel 
and Raws network with a median Pearson’s correlation coefficient (p) of 0.90 (Fig. 2a). Interannual 
correlations between calendar year precipitation from TerraClimate and recorded precipitation at 
SNOTEL sites was also lower than seen for neighboring GHCN stations across the western US with a 
median p of 0.79 (Fig. 2b), with a dry bias (-30%) across interior mountains where correlations were 
generally lower. The lower correlations compared with GHCN could be a function of station quality 
control measures, but also factors that intluence temperature and precipitation variability in mountainous 
areas such as inversions, snow-albedo feedbacks, and orographic precipitation ratios. In addition, the 
incongruence of the scales of gridded data and in-situ measurements are heightened in regions of 
complex terrain thus leading to an additional challenge in validation efforts. Validation statistics using 
CRU data showed generally similar values for correlation as those for TerraClimate, but with CRU 
showing slightly larger errors as noted with MAE (Table 3).

Comparisons of interannual variability in annual E T q from TerraClimate were made using a global 
network of FLUXNET stations^*. Hourly and bi-hourly observations of temperature, humidity, wind
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speed, and solar radiation from these stations were used to calculate E T q. Observational data were 
aggregated to monthly temporal scales to ensure that we used the same procedures for calculating E T q as 
TerraClimate. Interannual correlations were computed for stations that had at least 10 years of complete 
data, missing no more than 10% of data in any calendar year.

Table 3. Comparison of validation statistics for TerraClimate and CRU Ts4.0 for annual mean 
temperature (Tas), cumulative precipitation (Pr), reference evapotranspiration (ETO), and 
cumulative streamflow (Q). The median value of validation statistics for Pearsons’ correlation coefficient (p) 
and mean absolute error (MAE) are reported. Relative MAE is reported for Pr, ETo, and Q with absolute MAE 
shown in parentheses.

V ariab le  # S ta tions N etw ork T erraC lim ate  CRU Ts4.0

P M AE P M AE

Tas 3,230 G H C N 0.95  0.32 °C 0.95  0.53 °C

Pr 6,102 G H C N 0.90  9.1% (62.9 m m ) 0.89   11% (76 m m )

Tas 1,292 SNOTEL+RAW S 0.90  0.84 °C 0.90 I.2 I C° 

Pr 503 SNOTEL 0.78   30% (251 m m ) 0.78   41% (316 m m )

ETo 50 FLUXNET 0.77   8.3% (57 m m ) 0.76   8.5% (59 m m )

Q 587 GRDC 0.80  36.0% (lO Im m ) 0.76   42.0% (118 m m )
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Figure 2. Validation of TerraClimate temperature, precipitation, and reference evapotranspiration time 
series. Pearsons’ correlation coefficient (p) with data from co-Iocated pixels from TerraClimate and (a) annual 
mean temperature (TAS) from 1980-2015 from homogenized RAWS and SNOTEL stations, (b) annual mean 
precipitation (PR) from quality controlled SNOTEL stations, and (c) annual mean reference evapotranspiration 
(ETo) from FLUXNET stations from 1994-2014. Statistics are only reported for stations that had at least 
10 years of complete data.

0

O.S 0.6 0.7 O.S 0.9 1

Pearson’s correlations of annual E T q from TerraClimate showed a median p of 0.77 over the 50 
FLUXNET stations (Fig. 2c), with a MAE of approximately 57 mm (8.5%). The spatial correlation 
between observed annual mean E T q and E T q as modeled by TerraClimate was p =  0.98 highlighting that 
the spatial pattern was well captured. A slight overall bias (median -i-8%) in TerraClimate E T q was seen 
relative to E T q calculated at FLUXNET sites, which may arise due to the non-standard heights relative to 
canopies measured at FLUXNET sites. Overall validation statistics were slightly better with TerraClimate 
than those seen for CRU (Table 3). In addition, less of the spatial variability in climatological E T q was 
captured with CRU (p =  0.94).
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Figure 3. Validation of TerraClimate runoff data. Validation statistics of TerraClimate estimated runoff 
from the WBM showing (a) Pearson’s correlation coefficient, and (b) mean absolute error (mm) for annual 
water-year (Oct-Sep) runoff (Q) for 587 streamflow from BGDC’s Climate Sensitive Stations Dataset covering 
at least 30 complete years from 1958-2015. (c) Shows a scatterplot of observed annual mean Q from streamflow 
stations versus TerraClimate estimated Q and water-year accumulated precipitation (P). The 1:1 line is shown 
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To demonstrate potential utility of the water balance component of the dataset, we compared 
interannual variability in water-year runoff from our water balance model (WBM) to streamflow from 
587 pristine river basins that are part of the Climate Sensitive Stations Dataset from the Global Runoff 
Data Centre (The Global Runoff Data Centre, 56068 Koblenz, Germany, 2013). We considered water- 
year (Oct-Sep) rather than calendar year comparisons to account for the contributions of snowmelt 
runoff from watersheds in the northern hemisphere. These stations were selected based on having 
nominal water extraction or diversions, consistency of data records, at least 30 complete water-years of 
data from 1958-2015, and existing watershed boundary data. We extracted raster based runoff from the 
WBM for each gauge by delineating pixels that occurred within the upstream area of the respective 
watershed. The identical WBM was also run using CRU Ts4.0 datasets for comparative purposes.

Pearsons’ correlation coefficients were calculated between water-year cumulative runoff (Q) simulated 
by the WBM and observations. Streamtlow data were scaled to units of mm per year by accounting for 
the size of the upstream contributing watershed. We considered temporal correlations to assess 
interannual variability, as well as spatial correlations to assess the performance of the dataset to capture 
the spatial variability in annual Q. Interannual variability in estimated runoff was reasonably captured by 
the WBM, with a median p =  0.80 (Fig. 3a). The WBM captured over 70% of the interannual variability in 
Q of the mid-latitude basins in the United States, Europe and southern Australia. Lower explained 
variance was seen for parts of the tropics, boreal systems, and across the Great Plains of North America. 
Overall, the WBM exhibited a tendency for less runoff than was observed with a mean bias of -24%. The 
median relative MAE of water-year runoff was 36% (101 mm; Fig. 3b). However, MAE exceeded 100% for
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6% of the watersheds, predominantly arid watersheds across the Great Plains and Australia where annual 
mean Q <  25 mm. The spatial correlation between observed and simulated annual mean Q was p = 0.87, 
suggesting that the patterns were well represented by the WBM (Fig. 3c). By comparison, these validation 
results were improvements over the CRU Ts4.0 dataset using the same WBM framework in terms of the 
median interannual correlation (p =  0.765), relative MAE (42%, 118 mm), and the spatial correlation 
(p =  0.84).

Figure 4. Illustration of added value from the TerraClimate dataset. Top panel shows July 2015 monthly 
average maximum temperature (Tmax) from TerraClimate with the inset highlighting the region for (a-h). 
Comparison of (a,b) July 2015 Tmax, (c,d) 2015 calendar year accumulated precipitation, (e,f) 2015 calendar 
year climatic water deficit, and (g,h) 2015 runoff between tlie TerraClimate dataset (left) and CRU Ts4.0 
dataset (riglit).

u
X
<s

c
<

Q
to

c<

a
to

1200

1200

I -

Water balance models can be biased due to several factors. Errors can arise through inaccurate 
estimates of climate forcings, by not accounting for vegetation dynamics within a watershed, and by the 
overall simplicity of the single bucket model approach which does not account for subsurface routing of 
water. Notably, by using E T q, we assume a constant reference vegetation type that may substantially 
deviate from observations. Additionally, plant water soil storage capacity likely deviates at scales finer 
than those mapped here, which could contribute to uncertainty. We conducted an additional validation 
analysis by comparing cumulative water-year precipitation data to observed Q for each watershed. 
The WBM runoff data explained substantially more variance of the interannual variability in Q than 
using precipitation data alone (median p =  0.68). Observed mean runoff exceeded estimated mean annual 
precipitation for 30 of the 587 watersheds, further illustrating the challenges of interpolating estimates of
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precipitation data, particularly in mountainous watersheds as highlighted by previous studies^®’̂ ®. 
Underestimates of runoff and precipitation in some mountain watersheds highlights the need for 
continued improvement of mapping climate at fine spatial scales gIobaIIy^°’̂  ̂ and investment in 
observational systems in historically data sparse regions such as mountains.

Figure 5. Coverage of CRU Ts4.0 station influence used in TerraClimate anomalies. Proportion of monthly 
data with (left) at least 8 and (right) 0 stations from CRU Ts4.0 contributing to anomalies from 1958-2015. 
(a,b) Show coverage for mean temperature, used in TerraClimate maximum and minimum temperature, 
(c,d) show coverage for precipitation, and (e,f) show coverage for vapor pressure. TerraClimate uses anomalies 
from JRA-55 rather than assume climatological averages from CRU for voxels where 0 stations contribute.

«»

V

We illustrate some of the value-added information from the TerraClimate dataset compared to CRU 
Ts4.0 for a portion of northwestern North America in 2015 (Fig. 4). Specifically, we highlight the spatial 
detail added by the TerraClimate dataset that is absent in CRU across a region with substantial 
geographic gradients in energy and moisture that are apparent in July 2015 average maximum 
temperature (Fig. 4b,c), and 2015 annual precipitation totals (Fig. 4d,e). Integrating climate metrics 
through the WBM improves the biophysical relevance of the gridded products for use in global-change 
and ecological studies, as can be seen by the additional detail in TerraClimate for annual climatic water 
deficit (Fig. 4f,g), and annual Q in 2015 (Fig. 4h,i).

The use of climate data has increased in the past decade due to increasing availability of data, 
broadening of the disciplines that use such data, and increased interest in assessing local impacts from 
climate change. The potential applications of TerraClimate span a variety of spatial scales from users 
wanting local climate and water balance time series in regions void of easily accessible or sufficiently long 
station-based data, to users conducting broader spatial analyses to better understand and refine regional 
and global climate impacts to water resources and agriculture'*®. In addition, TerraClimate has many 
potential uses in ecology, macroecology, and global change science. For example, water balance data are
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increasingly used in explaining and predicting patterns of wildfire activity' 20,41,42 vegetation
distribution^®’'*̂  and structure'*'*, climate velocity^*, and drought induced tree mortality'*®.

Usage Notes
Climatological data for several voxels from the WorldClim dataset near perennial sea ice or glaciers 
primarily in Antarctica and Greenland had exceptionally large, and likely unrealistic, vapor pressure 
deficits (>0.5 kPa). These voxels were primarily located near the coastline and had nominal differences in 
diurnal temperature range ( < 2 ° C ) .  Moreover, we caution users that output from the water balance 
model, as well as estimated E T q, are likely suspect in perennially glaciated landscapes including 
Greenland and Antarctica. Secondly, there are a few voxels near the South Pole and in the Sahara Desert 
where climatological 1970-2000 precipitation from WorldClim v2.0 is zero. The use of multiplicative 
anomalies in climatologically aided interpolation sets all values to zero, which may be suspect.

Uncertainty in observational gridded climate datasets that use station based data can arise from a 
variety of sources ranging from procedural choices for interpolating and extrapolating data spatially, to 
changes in data availability through time, to climate inhomogeneities that lead to structural uncertainty in 
climate datasets'*®’'*̂ . TerraClimate uses three different datasets, each of which contain their own sources 
of uncertainty. We provide a measure of uncertainty in TerraClimate data using estimates of the number 
of stations that contribute to anomaly fields from CRU Ts4.0 based on decorrelation distances^*. CRU 
Ts4.0 provides estimates of the number of stations that contribute to estimates of monthly anomalies at 
the native scale of the data and provides these data for temperature, precipitation, and vapor pressure 
fields. The number of stations (between 0 and 8) contributing to monthly CRU Ts4.0 precipitation, mean 
temperature, and vapor pressure fields were interpolated to the TerraClimate grid and provided as 
ancillary data for precipitation, monthly maximum and minimum temperature, and vapor pressure. 
Anomalies from JRA-55 were used for voxels where zero stations contributed to the anomaly fields in 
CRU Ts4.0 data. The fraction of months from 1958-2015 with 8 contributing stations (maximum 
number of stations influencing) and 0 contributing stations (anomalies strictly derived from JRA-55) 
from CRU Ts4.0 for temperature, precipitation, and vapor pressure is shown in Fig. 5. These ancillary 
data are provided to help users of TerraClimate identify the robustness of interannual variability in data 
for specific geographic locations, as well as the data source of the interannual variability used in 
TerraClimate for these four variables. For example, the low fraction of months with high station density 
from CRU may limit the robustness of TerraClimate across regions such as Africa and South America, 
where temporal anomalies instead rely more heavily on JRA-55. Ancillary data are not provided for 
downward shortwave radiation or 10-m winds which exclusively use JRA-55 anomalies, or for E T q and 
the water balance variables which use combinations of the essential climate variables.

Long-term trends in primary climatological fields of TerraClimate are preserved from their parent 
datasets in JRA-55 and CRU Ts4.0 and hence TerraClimate should not be used to provide an 
independent estimate of trends. Interannual variability in primary climate variables from TerraClimate 
will not incorporate spatial variability in anomalies at scales finer than their parent datasets, including 
those associated with orographic precipitation ratios, inversions, and near coastal maritime influences. 
Likewise, while WorldClim data incorporated into TerraClimate allows for a high-resolution dataset, 
such approaches may not adequately resolve microclimate features, particularly in complex terrain or 
heterogeneous land-cover. Some approaches have been used to better resolve microclimate features to 
finer spatial scales'**, yet such relationships have been typically applied to regional domains.
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